skip to main content


Search for: All records

Creators/Authors contains: "Aardema, Matthew L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kivisaar, Maia (Ed.)
    ABSTRACT In Europe, genetically distinct ecotypes of the tick-vectored bacterium Anaplasma phagocytophilum circulate among mammals in three discrete enzootic cycles. To date, potential ecological factors that contributed to the emergence of these divergent ecotypes have been poorly studied. Here, we show that the ecotype that predominantly infects roe deer ( Capreolus capreolus ) is evolutionarily derived. Its divergence from a host generalist ancestor occurred after the last glacial maximum as mammal populations, including roe deer, recolonized the European mainland from southern refugia. We also provide evidence that this host specialist ecotype’s effective population size ( N e ) has tracked changes in the population of its roe deer host. Specifically, both host and bacterium have undergone substantial increases in N e over the past 1,500 years. In contrast, we show that while it appears to have undergone a major population expansion starting ~3,500 years ago, in the past 500 years, the contemporary host generalist ecotype has experienced a substantial reduction in genetic diversity levels, possibly as a result of reduced opportunities for transmission between competent hosts. IMPORTANCE The findings of this study reveal specific events important for the evolution of host specialization in a naturally occurring, obligately intracellular bacterial pathogen. Specifically, they show that host range shifts and the emergence of host specialization may occur during periods of population growth in a generalist ancestor. Our results also demonstrate the close correlation between demographic patterns in host and pathogen for a specialist system. These findings have important relevance for understanding the evolution of host range diversity. They may inform future work on host range dynamics, and they provide insights for understanding the emergence of pathogens that have human and veterinary health implications. 
    more » « less
  2. Abstract

    Our understanding of how natural selection and demographic processes produce and maintain biological diversity remains limited. However, developments in high-throughput genomic sequencing coupled with new analytical tools and phylogenetic methods now allow detailed analyses of evolutionary patterns in genes and genomes responding to specific demographic events, ecological changes, or other selection pressures. Here, we propose that the mosquitoes in the Culex pipiens complex, which include taxa of significant medical importance, provide an exceptional system for examining the mechanisms underlying speciation and taxonomic radiation. Furthermore, these insects may shed light on the influences that historical and contemporary admixture have on taxonomic integrity. Such studies will have specific importance for mitigating the disease and nuisance burdens caused by these mosquitoes. More broadly, they could inform predictions about future evolutionary trajectories in response to changing environments and patterns of evolution in other cosmopolitan and invasive species that have developed recent associations with humans.

     
    more » « less
  3. Understanding how evolutionary forces interact to drive patterns of selection and distribute genetic variation across a species' range is of great interest in ecology and evolution, especially in an era of global change. While theory predicts how and when populations at range margins are likely to undergo local adaptation, empirical evidence testing these models remains sparse. Here, we address this knowledge gap by investigating the relationship between selection, gene flow and genetic drift in the yellowtail clownfish, Amphiprion clarkii, from the core to the northern periphery of the species range. Analyses reveal low genetic diversity at the range edge, gene flow from the core to the edge and genomic signatures of local adaptation at 56 single nucleotide polymorphisms in 25 candidate genes, most of which are significantly correlated with minimum annual sea surface temperature. Several of these candidate genes play a role in functions that are upregulated during cold stress, including protein turnover, metabolism and translation. Our results illustrate how spatially divergent selection spanning the range core to the periphery can occur despite the potential for strong genetic drift at the range edge and moderate gene flow from the core populations. 
    more » « less
  4. Barluenga, Marta (Ed.)
    Abstract Trait loss represents an intriguing evolutionary problem, particularly when it occurs across independent lineages. Fishes in light-poor environments often evolve “troglomorphic” traits, including reduction or loss of both pigment and eyes. Here, we investigate the genomic basis of trait loss in a blind and depigmented African cichlid, Lamprologus lethops, and explore evolutionary forces (selection and drift) that may have contributed to these losses. This species, the only known blind cichlid, is endemic to the lower Congo River. Available evidence suggests that it inhabits deep, low-light habitats. Using genome sequencing, we show that genes related to eye formation and pigmentation, as well as other traits associated with troglomorphism, accumulated inactivating mutations rapidly after speciation. A number of the genes affected in L. lethops are also implicated in troglomorphic phenotypes in Mexican cavefish (Astyanax mexicanus) and other species. Analysis of heterozygosity patterns across the genome indicates that L. lethops underwent a significant population bottleneck roughly 1 Ma, after which effective population sizes remained low. Branch-length tests on a subset of genes with inactivating mutations show little evidence of directional selection; however, low overall heterozygosity may reduce statistical power to detect such signals. Overall, genome-wide patterns suggest that accelerated genetic drift from a severe bottleneck, perhaps aided by directional selection for the loss of physiologically expensive traits, caused inactivating mutations to fix rapidly in this species. 
    more » « less